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Abstract
Digital technologies have been contributing to providing quality health care to patients.
One aspect of this is providing accurate wait times for patients waiting to be serviced at
healthcare facilities. This is naturally a complex problem as there is a multitude of factors
that can impact the wait time. However, the problem becomes even more complex if the
patient's journey requires visiting multiple stations in the hospital; such as having vital
signs taken, doing an ultrasound, and seeing a specialist. The authors aim to provide an
accurate method for estimating the wait time by utilising a real dataset of transactions
collected from a major hospital over a year. The work employs feature engineering and
compares several machine learning‐based algorithms to predict patients' waiting times for
single‐stage and multi‐stage services. The Random Forest algorithm achieved the lowest
root mean squared error (RMSE) value of 6.69 min among all machine learning
algorithms. The results were also compared against a formula‐based system used in the
industry, and the proposed model outperformed the existing model, showing improve-
ments of 25.1% in RMSE and 18.9% in MAE metrics. These findings indicate a sig-
nificant improvement in the accuracy of predicting waiting times compared to existing
techniques.
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1 | INTRODUCTION

There has been tremendous focus on improving smart cities'
healthcare systems using artificial intelligence and machine
learning. This has been applied in controlling the spread of
diseases such as COVID‐19 in smart cities [1], helping disabled
people [2], or in the detection of diseases [3–5]. Another
important area of improvement in smart cities is queuing
systems, which have become an integral part of any service‐
oriented organisation. Be it banks, hospitals, or governmental
organisations, all use queuing systems to organise the crowds
and give a sense of predictability of when the customer expects
to be serviced. Recently, numerous incidents have underscored
the detrimental consequences of the inadequate organisation of
queue systems and insufficient information regarding patient

waiting times. For instance, a problematic occurrence between
2016 and 2019 revealed that nearly 5500 patients lost their lives
while enduring extended waiting periods for hospital beds in
overburdened medical facilities [6]. Furthermore, during the
initial year of the COVID‐19 pandemic in England, an
alarming escalation of over 4000 additional hospital deaths
transpired, attributable to patients enduring protracted waits of
up to nine hours without receiving any healthcare services [6].
These distressing events highlight the urgent need for
improved queuing systems and enhanced information
dissemination to promptly deliver vital healthcare services and
prevent such tragic outcomes.

While the ultimate goal of any organisation is to eliminate
these queues and have people be served instantaneously, we
know this is impossible as it conflicts with maximising resource
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utilisation. However, there are several key advantages of
providing an accurate waiting time estimation for patients,
such as

� Patient satisfaction: Providing patients with an accurate
waiting time increases their satisfaction and helps them
manage and arrange their other commitments. For example,
if the waiting time is high, patients can decide to leave and
reschedule the visit.

� Resource management: Knowing the average waiting time
can help healthcare providers and administrators better
allocate resources and staff to meet patient demand.

� Quality improvement: Measuring and tracking waiting times
can help identify bottlenecks and their causes.

� Transparency and Reputation: Providing patients with ac-
curate waiting times can increase transparency and trust in
the healthcare system, enhancing the clinic's reputation.

A wide range of factors and features affect the waiting
time. These factors include the number of patients waiting, the
service or services they need, and the number of healthcare
providers available. It also depends on other factors like the
hour of the day, day of the week, day of the month, and many
others. Waiting times are relatively more straightforward to
predict when the patient requires a single service. However, in
a multi‐stage patient journey, the task becomes more complex.
For example, if the patient needs to have his vitals taken by a
nurse, do an ultrasound image, and then see the specialist, in
such case predicting the waiting time is a more complicated
task.

Many traditional queuing systems are formula‐based, which
is not very flexible and cannot easily adapt to changes in de-
mand or different service needs. Nor can it accurately utilise
the many features in the system, which can lead to a waste of
resources and more delays. Thus, the motivation for this
research is to develop a system that can handle a large number
of features, adapt to temporal changes, and does not need
complex hard‐coded rules that need to be redesigned every
time a change is introduced to the system. Machine learning‐
based solutions are one of the most efficient techniques to
compact this. In addition to being able to handle a large
number of features, they can handle both single‐stage and
multi‐stage requests seamlessly.

While there are several attempts to tackle this problem
using AI‐based and ML‐based solutions, they were single‐stage
service queues and often specific to certain types of healthcare
facilities. Section 2 presents a detailed literature review.

The general scenario this work attempts is in a hospital or a
clinic, where the patient must visit multiple stations before
seeing the specialist. For example, one needs to have their vital
signs taken in one Hall (or Lab), then proceed to do an ul-
trasound Echo and finally see the specialist. These stages/
stations can be in the same area/hall or different hospital areas.
When the patient first arrives and checks in, whether on a
kiosk or via a mobile app, the system would need to provide a
time estimate of how long this journey will take.

This paper presents an ML‐based approach that relies on
services the patient needs, features derived from the current
hospital status, and temporal features derived from the time of
the service request. The machine learning‐based model has to
predict the estimated waiting time for that patient. Note that
the estimated waiting time presents the time from the moment
of issuing a ticket until the patient reaches the doctor (the main
service/the last stage), considering the waiting and serving
times of the sequence of services required before reaching the
doctor.

The quality of any machine learning algorithm is based on
the data used for training. In this project, an anonymised
dataset was provided by a company that operates the queuing
systems inside a significant healthcare facility. The dataset in-
cludes data collected for almost a year. This dataset is
transaction‐based, which means it includes a predicted waiting
time generated when the tickets are issued to patients and the
actual time it took for that patient to be serviced per each
customer request or transaction. The predicted time included
in the dataset is based on a formula‐based method called
Average Service Time (AST), which will be discussed in detail
in Section 2.1.

To be able to provide meaningful features for any ML‐
based system, a hospital‐status reconstruction was per-
formed. This process aimed to extract statistics regarding the
status of the hospital per minute during the entire year and use
these statistics as possible features for the ML algorithm. These
time reconstruction snapshots are the foundation for gener-
ating real‐time predictions for single‐stage and multistage re-
cords. This enables this research to deliver an efficient business
solution that optimises the queuing experience. This could be
an even more complex problem if we have multiple objectives
that we are trying to optimise for Ref. [7]. However, this
research focuses on optimising a single factor, which is the wait
time.

To summarise, the main contributions of this work are as
follows:

� Introduce a real hospital ticketing dataset to the research
community.

� Present a method to transform typical transactional data
into a dataset that can be used in conjunction with ML
methods.

� Utilise feature engineering to develop queue‐related and
temporal features that improve the wait time prediction.

� Evaluate the prediction accuracy of several ML‐based
techniques.

� Compare the accuracy of the ML‐based technique to the
formula‐based method.

The document is organised as follows: Section 2 presents
the literature review of current approaches. Section 3 describes
the problem's methods and mathematical modelling of the
problem, as well as the dataset collected and feature processing
and engineering applied. The results of the different methods
and a quantitative analysis of the results are presented in
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Section 4. Finally, Section 5 summarises the results and
propositions for future work.

2 | BACKGROUND AND LITERATURE
REVIEW

This section presents the relevant prior research and findings
related to this problem. This context will establish the
groundwork for a comprehensive understanding of the
mathematical model detailed in the subsequent subsections.
First, the AST method, a common technique, is presented.
Next, different approaches to waiting time prediction using
classical machine learning and deep learning techniques are
detailed in the subsequent sections.

2.1 | Average service time method

The AST method is a standard method for calculating the
waiting time in queuing scenarios. The model predicts the
waiting time based on historical data. It uses data from the past
week, in addition to the current day—if it satisfies the condi-
tion of serving a predefined number of tickets already. The
model checks each customer's expected serving order on
counters and then calculates the AST for each service request
during the past 7 days. Then, it adds the AST of the individual
requests of all customers ahead of the current customer to find
the total estimated time, as represented in Equation (1). Note
that K is the total number of requests in the queue.

Xk

n¼1
ASTn ð1Þ

For example, if the current transaction has four trans-
actions ahead with AST of 5, 5, 6, and 6 min, then the esti-
mated waiting time for that specific customer should be
around 21 min. However, the problem with this model is that
the results are inaccurate, as they do not account for the hour
of the day, day of the week, or many other factors. This is why
the machine learning model might significantly improve this
problem.

2.2 | Waiting time prediction using classical
machine learning algorithms

A. Joseph et al. describe a method for predicting waiting times
in radiation oncology using machine learning [8]. The patient's
waiting experience is a significant challenge in healthcare, and
waiting times for radiation oncology treatment can be partic-
ularly unpredictable and stressful for patients. The main fea-
tures that generated the best‐fit model were allocated
appointment time, radiotherapy fraction number, median past
treatment duration, the number of treatment fields, and pre-
vious treatment duration. The authors concluded that using

machine learning could help improve the predictability and
accuracy of waiting times in radiation oncology, leading to a
better patient experience and potentially reduced stress for
staff.

R. Qamili et al. present a framework for improving the
efficiency of issue ticketing systems using machine learning
techniques [9]. The authors of this paper propose using ma-
chine learning techniques to analyse and classify issues to
improve the efficiency and effectiveness of issue ticketing
systems. The authors evaluate the performance of their intel-
ligent framework for issue ticketing using several metrics,
including accuracy, precision, and recall. They find that their
framework can achieve high levels of accuracy in classifying
issues, with an average accuracy of over 90% across all cate-
gories. They also find that their framework has a high level of
precision and recall across all categories, with an average of
over 85% and 75%, respectively. Overall, the study's results
suggest that using machine learning techniques can signifi-
cantly improve the efficiency and effectiveness of issue tick-
eting systems. However, the paper does not deal with wait time
prediction.

Curtis et al. aimed to utilise machine learning techniques to
accurately predict patient wait times and appointment delays at
a hospital [10]. The authors note that long wait times and
delays can lead to patient dissatisfaction and reduced trust in
the healthcare system, and therefore, improving the prediction
of these events could potentially lead to better resource allo-
cation and improved patient experiences. The authors obtained
data from the electronic health records of a large urban hos-
pital, including information on patient demographics, di-
agnoses, and appointment details. However, they created a
binary classification label for each appointment, indicating
whether or not there was a delay of at least 30 min. The au-
thors trained and tested several machine‐learning models on
the preprocessed data, including logistic regression, decision
trees, and random forests. They found that the random forest
model performed the best, with an AUC (area under the curve)
of 0.78 on the testing data. This indicates that the model can
distinguish between appointments with delays and those
without delays with high accuracy, but it was not designed to
predict the wait time.

Y. Sanit‐in and K. R. Saikaew proposed three approaches
for predicting customers' waiting time in one‐stop service
scenarios [11]. These approaches include Queuing theory, the
Average time, and a machine learning‐based model using the
Random Forest algorithm. This research was done based on
two datasets. The first one is the Khon Kaen University post
office, which has 3480 records, and the second one is the
queue logs of the ear, nose, and throat clinic with 1348 records.
Both datasets' records were classified based on the duration
into five classes: Very short, Short, Medium, Long, and Very
long, which transformed the problem into a simple classifica-
tion problem rather than a more complex regression problem.
The results show that the machine learning‐based model has
the best accuracy of 85.76% and 81.7% in the ear, nose and
throat clinic and the Khon Kaen University post office data-
sets, respectively. The Queue theory got an accuracy of 65.23%
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in the ear, nose, and throat clinic dataset, and it was not applied
to the second dataset. The average time theory got an accuracy
of 64.94% and 68.89% on both datasets, respectively.

A. Rastpour and C. McGregor proposed a machine
learning approach to predict patient waiting time in mental
health care settings [12]. The authors obtained data from a
large mental health care provider in the United States. The data
was highly unidentified, with personal identifying information
removed, and included information on patient visits, diagnoses,
and treatment modalities. They performed data cleaning and
preprocessing steps, including removing missing and outlier
data, to prepare the data for analysis. The authors trained and
tested several machine learning algorithms, including decision
tree, random forest, and support vector machine (SVM)
models. The authors found that the SVM model performed
best, with an overall accuracy of 78.6% and a root mean
squared error (RMSE) of 23.5 min. They also found that the
model performed better at predicting longer wait times, with
84.2% accuracy for wait times greater than 60 min.

C. Gomes et al. proposed a machine learning approach for
predicting the waiting time in a bank queue based on predicting
the service time of individual customers [13]. They use support
vector regression (SVR) as the machine learning technique to
model the relationship between the waiting and predicted ser-
vice times. To evaluate the effectiveness of the proposed
approach, the authors collected data from a bank in Indonesia.
The data consists of a training set of 8000 records and a testing
set of 2000 records. The authors found that the SVR model
achieved an average error of 2.44 min and a RMSE of 3.24 min.
They also compared the performance of the SVR model with
other machine learning techniques, such as decision tree
regression and random forest regression, and they found that
the SVR model outperformed these other techniques in terms
of prediction accuracy. Overall, the results of this study
demonstrate that the proposed approach using SVR is effective
for predicting the waiting time in a simple bank queue based on
the predicted service time of individual customers.

2.3 | Waiting time prediction using deep
learning algorithms

I. Kyritsis and Michel Deriaz present a machine‐learning
approach for predicting waiting times in queuing scenarios
[14]. Accurate waiting time predictions can be useful in various
settings, such as in service industries where customers may be
more likely to return if they have a good experience or in
transportation systems where timely predictions can help with
scheduling and resource allocation. The authors' work aims to
improve upon traditional approaches to waiting time predic-
tion, which may not be as accurate or efficient. The authors
preprocess the data and perform feature engineering before
training a neural network with two hidden layers on the data.
After 500 training epochs, the model achieves a mean absolute
error of 3.35 min on the test set. The model is compared to
two baseline models and performs significantly better, with a
mean absolute error of 28.9% lower than the naive mean
model and 27% lower than the naive median model.

H. Hijry and R. Olawoyin suggested a deep learning‐based
model to predict the Patient Waiting Time in the Queue Sys-
tem of an emergency room [15]. (ER) is an essential component
of the healthcare system, providing immediate medical attention
to patients with urgent or life‐threatening conditions. However,
ERs are often overcrowded and have long waiting times, leading
to frustration and dissatisfaction among patients and healthcare
providers. In this paper, the authors aim to address this problem
by using deep learning algorithms to predict patient waiting time
in the queue system of the ER. The authors first collected data
from an ER hospital inNigeria to perform the analysis. This data
included patient demographics, arrival time, triage category, and
waiting time. The authors found that the deep learning model
achieved an accuracy of 84.5% and a RMSE of 0.82 min. The
authors also found that certain factors, such as the patient's triage
category and arrival time, significantly impacted waiting time.
These findings suggest that using deep learning algorithms could
potentially improve the efficiency and effectiveness of the ER
queue system.

Kuo, Yong‐Hong, et al. present an integrated approach of
machine learning and systems thinking for predicting waiting
times in an emergency department [16]. They applied four
popular machine learning algorithms (stepwise multiple linear
regression, artificial neural networks (ANNs), support vector
machines, and gradient boosting machines) to a dataset
collected from an emergency department in Hong Kong. They
compared the results to a linear regression model as a baseline.
The authors found that all four machine learning algorithms
outperformed the baseline model, with the stepwise multiple
linear regression reducing the mean‐square error by almost
15% and the other three algorithms reducing the mean‐square
error by approximately 20%. The authors also found that
introducing the concept of systems thinking led to significant
enhancements of the models, with reductions in the mean‐
square error of 17%–22% due to the utilisation of systems’
knowledge. They also note predicting waiting times for less
urgent patients is more challenging.

Anussornnitisarn, P., and Limlawan, V. propose the use of
ANNs to predict waiting times in queue systems [17]. The
design of advanced queue systems is crucial to managing
customer flow and reducing waiting times in various industries,
such as healthcare, banking, and retail. The authors first
collected queue length, arrival rate, and service rate data to
train the ANN model from a real‐world queue system. The
authors found that the ANN model outperformed the tradi-
tional model regarding prediction accuracy. The authors also
found that increasing the number of hidden layers and neurons
in the ANN model improved prediction accuracy, while
increasing the learning rate harmed accuracy.

R. P. Satya Hermanto et al. developed a model to predict
customer wait times in bank queues using a type of neural
network called RPROP [18]. The authors collected data on
factors influencing wait times, such as customer demographics,
time of day, and teller availability. The authors trained an
RPROP neural network and compared its performance to
several machine learning models, including linear regression
and decision trees. They found that their RPROP model out-
performed the others, achieving an accuracy of about 93% in
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predicting wait times. They also conducted a sensitivity analysis
to evaluate the impact of different factors on wait times. The
results revealed that customer demographics and teller avail-
ability were the most significant predictors of wait times.

2.4 | Summary

Table 1 summarises the latest research in the area of wait time
estimation. It can be seen that both classical machine and deep
learning algorithms can be used to train waiting‐time predic-
tion models. However, one can notice that

� Some of the previous research simplified the wait time
prediction problem by transforming it into a classification
problem. However, this does not produce an accurate wait
estimation.

� Some of the current research considered banking queues.
The wait time in the bank queue is typically shorter, so the
RMSE or MAE comparison becomes inaccurate.

� Most of the detailed medical queues are considered a spe-
cialised queue, not a general hospital with various services.

� None of the existing research approached multistage queues.

Thus, the gap fulfiled by this work will be in addressing the
wait time prediction problem in general healthcare facilities
with multi‐stage queues.

2.5 | Machine‐learning model

Machine learning can be an effective tool in developing solutions
in the medical field [19–21], for security systems [22], battery
discharge capacity [23] and book recommendations [24]. Thus,
machine learning can take a role in this problem by building a

machine learning‐based model that can learn from the data and
produce accurate patient waiting time predictions. The model
would predict the patient's waiting time after taking a ticket from
a ticketing system based on several features that may affect the
patient's waiting time. In machine learning, time prediction can
be considered a regression problem, where multiple algorithms
can be used, such as the Random Forest, SVR, Linear Regres-
sion, KNN, Gaussian Regression etc. In addition, ANNs and
deep neural networks can be examined in addition to the classical
ML models. Figure 1 shows the typical workflow of any
machine‐learning‐based model, where an ML model is trained
based on existing data and the problem specifications. Next, the
model is tested on unseen new records. If the model's perfor-
mance is acceptable, it gets deployed into production; otherwise,
the errors are analysed to adjust themodel hyper‐parameters and
restart the process. This section details the algorithms used to
build different models for this problem.

2.5.1 | Ridge regression

Ridge Regression is a regularised linear regression algorithm
used to deal with multicollinearity and overfitting problems in
the dataset [25]. It is a linear regression model that adds an L2
penalty term to the cost function of the ordinary least squares
regression. The L2 penalty term shrinks the magnitude of the
coefficients towards zero, leading to a better model with
improved generalisation performance and less prone to over-
fitting. The Ridge Regression model minimises the cost func-
tion as shown in the Equation (2)

where

Cost¼
XN

i¼1

8
<

:
yi −

XM

j¼0
βjxij

9
=

;

2

þ λ
XM

j¼0
w2

j ð2Þ

TABLE 1 Summary of literature related to wait time prediction.

Author Method Issues Error

Joseph et al. [8] Classical ML Limited to radiation oncology MAE = 4.6 mins

Qamili et al. [9] Classical ML Predict category of delay (3 classes) not a specific wait time N/A

Curtis et al. [10] Classical ML Based on binary classification of the delay N/A

(True: More than 30 min, False: Less than 30 min)

Sanit‐in &Saikaew [11] Queueing theory & ML Predicted the delay class (5 classes), Not as a regression problem N/A

Rastpour & McGregor [12] Classical ML Limited to mental health care facility RMSE = 23.5 mins

Gomes et al. [13] Classical ML (SVR) Limited to banking data single‐stage queue RMSE = 3.24 mins

Kyritsis & Deriaz [14] Deep learning Single‐stage queue MAE = 3.35 mins

Hijry & Olawoyin [15] Deep learning Limited to emergency rooms, which is usually shorter waiting period RMSE = 0.82 mins

Kuo et al. [16] Deep learning Limited to emergency rooms RMSE = 44.3 mins

Anussornnitisarn &
Limlawan [17]

ANN Single‐stage queue with simulated artificial delay N/A

Hermanto et al. [18] Deep learning Limited to banking data MSE = 811,859s ⇒
RMSE = 15 min
MAE = 12:12 min:sec
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� N: the number of observations in the dataset
� M: the number of features or independent variables in the
dataset

� yi: the target or dependent variable value for the ith
observation

� xij: the value of the jth feature for the ith observation
� βj: the coefficient for the jth feature
� λ: the regularisation parameter that controls the strength of
the penalty term.

� Wj: the weight or penalty assigned to the jth coefficient.

2.5.2 | Lasso regression

Lasso regression is an extension of linear regression that per-
forms variable selection and regularisation to prevent over-
fitting. Lasso regression aims to minimise the sum of squared
errors between the predicted and actual values, subject to a
constraint on the absolute value of the coefficients.

Lasso regression uses L1 regularisation, which penalises the
absolute value of the coefficients, as opposed to ridge regres-
sion, which uses L2 regularisation and which penalises the
squared value of the coefficients. The L1 penalty shrinks some
of the coefficients to zero, effectively performing feature se-
lection by eliminating irrelevant features from the model. The
Lasso Regression model minimises the cost function as shown
in the Equation (3), with the variables used being the same as
those used in the Ridge Regression.

Cost ¼
Xn

i¼1

0

@yi −
Xp

j¼1
xijβj

1

A

2

þ λ
Xp

j¼1

�
�
�βj

�
�
� ð3Þ

2.5.3 | Elastic net regression

Elastic net regression is another type of linear regression that
combines the properties of Lasso regression and Ridge
regression. It is often used when there are high‐dimensional
datasets and multicollinearity among the predictors. In
Elastic Net regression, the objective is to minimise the sum of
errors between the actual and predicted values, subject to a

constraint on the sum of the absolute values of the regression
coefficients (L1 penalty) and the sum of squared values of the
regression coefficients (L2 penalty).

The L1 penalty helps produce sparse solutions by shrinking
some regression coefficients to zero. In contrast, the L2 pen-
alty helps reduce the effect of multicollinearity among the
predictors. The combination of L1 and L2 penalties in Elastic
Net regression allows it to select relevant predictors and
perform well on datasets with many predictors, some of which
may be correlated. The elastic net model minimises the cost
function as shown in the Equation (4).

Cost¼
1
n

Xn

i¼1

�
yi − ŷ i

�2
þ λ1

Xp

j¼1
jwjj þ λ2

Xp

j¼1
w2

j ð4Þ

Where

� n: the number of observations in the dataset.
� yi: the actual target value for the ith observation.
� ŷi: the predicted target value for the ith observation.
� p: the number of predictor variables in the model.
� Wj: the jth regression coefficient.
� λ1 and λ2: the hyperparameters that control the strength of
the L1 and L2 penalties, respectively.

2.5.4 | Decision tree regression

A decision tree regressor is a machine learning algorithm that
creates a model in the form of a tree to predict a continuous
target variable. The algorithm splits the data based on the
values of input features in a way that maximises the reduction
of the variance of the target variable. The final model consists
of a tree‐like structure, where each internal node represents a
test on a specific feature, each branch represents the outcome
of the test, and each leaf node represents a prediction.

The decision tree regressor is a powerful and flexible al-
gorithm that handles numerical and categorical data, in-
teractions, and non‐linearities between features. However, it is
also prone to overfitting if the tree is too deep or has too many
features in the data. Therefore, tuning the parameters wisely is
crucial to obtain the best possible results.

2.5.5 | Random forest regression

Random Forest Regressor uses an ensemble/combination of
decision trees to predict the target variable. Each tree in the
forest predicts a numerical value, and the final output is the
average of all the predicted values. The algorithm also involves
random feature selection, where each tree is trained on a random
subset of the features [26]. This helps to decrease the correlation
among the trees and enhance the overall performance. This
makes the Random Forest Regressor a strong, flexible algorithm
that can handle complex regression problems.

F I GURE 1 Typical workflow of any ML model.
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2.5.6 | Artificial neural network

Artificial neural networks is a machine learning model inspired
by the human brain's structure and functioning. A neural
network consists of layers of interconnected neurons that
process and transmit information if sufficiently activated. The
most common type of neural network is the feed‐forward
neural network, where data flows from an input layer to the
output layer. A simple neural network would consist of an
input layer, one hidden layer, and an output layer. The input
layer receives data from the outside world, and the output layer
produces a prediction or classification based on the input. The
hidden layer performs intermediate computations on the
data, transforming it into a more useful form for making
predictions.

Several parameters can be tuned in any neural network,
including the number of neurons in each layer, the type of
activation function used, the learning rate, the loss function,
the weight initialisation, and the optimisation algorithm.
Choosing the appropriate values for these parameters is critical
for training an effective neural network. It often involves a
trial‐and‐error process, where different combinations of values
are tested and evaluated until the optimal set of parameters that
can produce the best possible results is found [27].

2.5.7 | Deep neural network

DNNs are similar to classic ANN, except that in DNNs the
number of hidden layers is two or more. Increasing the number
of hidden layers can enhance the efficiency of handling com-
plex problems. However, this additional feature increases the
risk of overfitting; thus, the number of hidden layers should be
chosen wisely [28].

3 | MATERIALS AND METHODS

3.1 | Problem formulation & mathematical
modelling

Asmentioned in Section 1, a complete patient trip to a healthcare
facility might require being serviced by multiple services. For
example, as shown in Figure 2, if the patient were visiting the
cardiology clinic, he/shewould need his vital signs checked, have
an Echo done, and finally see the specialist in the cardiology
clinic. There might be multiple counters providing any of these
services. And these services might be served all in the same or
multiple halls. Typically, the patients' waiting time starts from
issuing the ticket until reaching the last stage (specialist).

In this research project, multiple assumptions and limita-
tions must be taken into consideration which are

� The sequence of services and the halls where these services
will be delivered will be known once the patient requests a
ticket.

� Patients can be served all services in the same or multiple
halls. The total estimated time will be based on adding all
services from all halls.

� The user cannot be assigned the same service but in two
halls.

The problem with predicting the wait time is that when you
issue the ticket, you do not know which counter the patient will
be assigned to since the assignment is dynamic. In addition, some
of the counters (service stations) handle more than one type of
service; for example, the Echo can do a Cardiology Echo or a
Urology Echo. If the patient assignment to counters was
deterministic, the problem would be much simpler and could be
handled by counting the number of people in line for each
service.

To prepare the mathematical model, the following variables
can be defined:

� T[id]: The total waiting time for a patient (id) until reaching
the last stage (doctor).

� WS(x, hid, cid): The waiting time for the requested service
(x) that is being served in the hall (hid) by the counter (cid).

� SS(x, hid, cid): The serving time for the requested service (x)
that is being served in the hall (hid) by the counter (cid).

Based on these variables, Equation 5 can be defined as
aggregating the individual services' waiting and serving time.
Note that the timemay vary based on the number and type of the
requested services and the hall the customer can be assigned to.

T ½id� ¼
Xn

x¼1
WSðx; hid; cidÞ þ

Xn−1

x¼1
SSðx; hid; cidÞ ð5Þ

The remaining challenge will be to get an accurate estimate
of the waiting and serving time for each service at the time of
issuing the waiting ticket. To come up with these estimates, any
queuing system should track the status of each counter at any
given moment and how many potential patients can be
serviced by that counter. More details on this feature engi-
neering will be detailed in Section 3.4.

F I GURE 2 Patient's journey based on the reason of visit.

AL‐MOUSA ET AL. - 7
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3.2 | Typical data collection

Typical queuing systems store information about completed
transactions/services. Table 2 presents a sample of what a
typical system would store about the service. Note that the
patient may have more than one record in this table if the
service requested requires the completion of multiple mini‐
services. Note that this table cannot be used as the basis for
a machine‐learning model, as the interest is in the total waiting
time, not the individual time of mini‐services.

There should also be a means to map counters to services
to find the services each counter can serve. This will be very
useful in determining each counter's competing services. In
addition, typically, there is tracking for the counter status (i.e.
whether it is serving, waiting to serve, or even on a break). This
usually maps the counter to the individual employee working
on the counter.

A dataset from an anonymised hospital was used to vali-
date the proposed model. This hospital has 13 halls (A hall is a
group of counters), 223 counters, and provides a total of 303
services. Note that some services can exist in multiple halls,
and the counter can serve multiple services. The dataset has
almost 300 K patient transactions spanning almost a year, and
they follow the structure presented in Table 2. Note that all

patient names and identifying data have been removed, and
only an anonymised ID is used in the table.

3.3 | Data insights

The congestion of the hospital is one of the major pieces of
information that can be illustrated by visualisation. Figure 3
shows the hospital's congestion based on the average number
of issued tickets per day of the week. As expected, the weekend
days have the lowest values. Meanwhile, Sunday and Monday
days have the highest values.

Figure 4 shows the congestion based on the total number
of issued tickets for any day of the month. The weekend effect
can explain the peaks and valleys in the diagram. In addition,
for day 31, five months out of 12 do not have this day, and this
can illustrate why it has the lowest value.

Figure 5 shows the hospital's congestion based on the
average number of issued tickets per hour of the day. It shows
that the peak time during the day is in the morning, specifically
at 10 am and 11 am.

TABLE 2 Significant customer transactions' table columns.

Column name Description

Queue
Branch ID

Branch identity which this transaction belongs to.

Queue Branch
visit ID

The visit ID of a transaction that distinguishes between
one patient and another, and it can be used to group
the transactions with the same visit for the same
customer.

Priority It is the priority of the transaction (patient).
Appointments normally get a very high priority.

Service ID The service of the transaction.

Counter ID The counter that the ticket was taken specifically to or
the counter that serves this

User ID The user (employee) that the ticket was taken specifically
to or the user that serves this transaction.

Waiting start
time

This is the time that the customer starts waiting his turn.

Serving start
time

The time when the transaction started to serve on some
counter, it will be empty if the customer was never
served.

Serving end time The time when the counter end serving the transaction, it
will be empty if the customer was never served.

Waiting seconds The period that the customer was in a waiting state.

Serving seconds The period that the customer was in a serving state.

Hall ID The hall ID for this transaction.

Serving type It indicates how the transaction was closed, for example,
served, or not served.

F I GURE 3 Hospital's congestion based on the day of the week.

F I GURE 4 Hospital's congestion based on the day of the month.

8 - AL‐MOUSA ET AL.
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As mentioned previously, the hospital has 13 halls.
Figures 6–8 analyse the data in these halls. Firstly, Figure 6
shows the congestion of each hall based on the number of
issued tickets. It can be noted that Hall A has the majority
share of tickets, while Hall M has the least.

Meanwhile, Figure 7 illustrates each hall's supported ser-
vices. Even though Hall A has lots of tickets, it can be seen that
the number of services in that Hall is minimal.

Finally, Figure 8 shows the number of available counters in
each hall. Halls B and C are the largest, with more than 30
service counters in each.

To understand the length of the services we are dealing with,
the issued tickets have been grouped into three classes based on
their serving time, and these classes are ‘Long’ for tickets that
took longer than 8 min to be completed, class ‘Medium’ for
tickets that were served in the range of (4–8) minutes and the
‘Short’ class in the range of (0–3) minutes. Figure 9 shows issued
ticket distribution based on these three classes.

Figure 10 shows the 10 most popular services based on the
number of issued tickets for each service. Note that the
remaining services with at least one request during the year are
all combined in the last bar.

Considering the previous analysis, one can conclude the
need to add features like Hour of the Day, Day of the Week,
Day of the Month, the Hall ID, and the actual service ID.
Using such features will be much more valuable than including
the timestamp.

3.4 | Feature engineering & extraction

3.4.1 | Capturing queue status features

Based on the discussion in Section 3.2, it is clear that there is
a need to have an auxiliary data source that provides the

F I GURE 5 Hospital's congestion based on the hour of the day.

F I GURE 6 Halls' congestion during the year.

F I GURE 7 Number of supported services in each hall.

F I GURE 8 Number of available counters in each hall.

F I GURE 9 Distribution of issued tickets based on the three services
classes: long, medium, and short.

AL‐MOUSA ET AL. - 9
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real‐time status of any healthcare facility. This should include
how many patients are requesting any service and how many
employees are available to service that type of service. How-
ever, it is essential to note that when the patient is waiting for
his turn at a counter, the counter could be serving other
services that are different from the patient of interest service.
Hence, patients with other services serviced by the same
counter will affect the patient's waiting time. This calls for the
creation of a new feature, which is the number of patients
waiting at counters that serve the service of the current
patient.

As an illustration, Figure 11 shows a simple scenario of
multiple services that can be served on multiple counters. All
three counters can service 1, while Service two is serviced by

counters {2,3} only. Let us assume that S1 and S2 are the
numbers of patients waiting for Service 1 and Service 2,
respectively. And one can assume that these will be roughly
distributed evenly on the available counters. Then, the number of
patients serviced by each counter will be given by Equa-
tions (6–8).

Serviced by Counter 1¼
S1
3

ð6Þ

Serviced by Counter 2¼
S1
3
þ

S2
2

ð7Þ

Serviced by Counter 3¼
S1
3
þ

S2
2

ð8Þ

Thus, the number of patients waiting at counters that serve
the service S1, call it AS1, can be found using Equation (9).

AS1¼ Ceil
�

S1
3
þ

S1
3
þ

S2
2
þ

S1
3
þ

S2
2

�

¼ Ceilð1� S1þ 1� S2Þ
ð9Þ

Similarly, the number of patients waiting at counters that
serve the service S2, called AS2, can be found using
Equation (10).

AS2¼ Ceil
�

S1
3
þ

S2
2
þ

S1
3
þ

S2
2

�

¼ Ceil
�
2
3
� S1þ 1� S2

�

ð10Þ

So at this point, three features are now defined per service:
the number of patients requesting the service, the number of
employees or counters serving that service, and the number of
patients waiting at counters that serve the service. These fea-
tures change constantly and thus should be tracked through
time in any institution with such a queuing problem. A new
table was created to store the hospital status every minute, and
this table will be referred to as ’Hospital_Status'. This table
consists of six attributes, but three of them are repeated for
each service, and these attributes are 4, 5, and 6 in Figure 12. In
the dataset used, since there are 303 services in the hospital, the
number of columns in this table will be (3 þ 303 � 3 = 912)
features.F I GURE 1 1 Counters with multiple services.

F I GURE 1 0 The 10 most popular services during the year.

F I GURE 1 2 Arrangement of columns in the ‘Hospital_Status' table.

10 - AL‐MOUSA ET AL.
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3.4.2 | Feature selection for the machine learning
Model

To train the ML model, one must aggregate all records related
to each patient visit to find the total time. Figure 13 illustrates
this point clearly.

In addition to the waiting time (label), the ML table should
contain information about the patient's requested features and
the system status when the patient arrives. These features are
shown in Table 3, and their arrangement is presented in
Figure 14. Note that three temporal features were extracted
from the time when the transaction was done. These are the
day of the month, day of the week, and hour of the day. As
shown in Figures 3–5, these three features have clear patterns
that would impact the wait time. Thus, they were included.
One can also note that four of these features are repeated for
each service. Thus, in this case, this table's number of features
(columns) will be (8 þ 303 � 4 = 1220). Using this format,
one can see the inherent support for the multi‐stage services.
Columns (8, 12, 16 … etc.), which are repeated for all services,
indicate whether a single or multiple services are requested.
This would pose a challenge if more new services were added,
as this would require changing the number of columns in the
data table. Algorithm 1, details how the ‘ML table’ can be
generated using the transactions data and the ’Hospital_Status'
data.

Algorithm 1 The algorithm for building the ‘machine
learning’ table

3.5 | Data preprocessing

After preparing the data using the previous steps, the data is
now ready to be utilised by different machine‐learning models.
However, several preprocessing steps are detailed below before
proceeding with the ML algorithms:F I GURE 1 3 The ML label's formation.

TABLE 3 ‘ML table’ features.

Feature Description
Data
type

Visit ID The visit ID of a transaction that distinguishes between one patient and another, and it can
be used to group the transactions with the same visit for the same customer.

Integer

Queue Branch ID Branch identity which this transaction belongs to. Integer

Priority It is the priority of the transaction (patient). Appointments typically get a very high priority. Integer

Waiting start time The time that the customer starts waiting his turn. Datetime

Day of the month The day of the month when the transaction was done. Integer

Day of the week The day of the week when the transaction was done. Integer

Hour of the day The hour of the day when the transaction was done. Integer

Requested service X A flag if the patient requested this service. Binary

Number of patients waiting for service X The number of patients waiting for a specific service in a given time. Integer

Number of users serving the service X The number of users (employees) serving a specific service in a given time. Integer

# of patients waiting on counters that serve service X The number of patients waiting at counters that serve service X Integer

Label The estimated waiting time to reach the doctor. Time

AL‐MOUSA ET AL. - 11

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12079 by Jordan H
inari N

PL
, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3.5.1 | Handling non‐numeric features

It is necessary to handle non‐numeric features since most
machine learning algorithms require numerical input data to
make predictions. Therefore, non‐numerical features were
converted into numerical variables by encoding them so the
algorithm could understand them. The label encoding method
was used to handle the Boolean flags of services, for example,
the feature ’Requested service 1234’. The ’True’ value was
converted to a numeric value of 1, and the ’False’ value was
converted to a numeric value of 0.

3.5.2 | Handling outliers

Outliers can significantly impact machine learning models as
they can skew the results, leading to incorrect conclusions or
inaccurate predictions. Thus, outlier records were removed as it
is expected that some patients might have had to wait for an
unreasonably long time or that a human error could have
caused some tickets not to be closed properly.

There are several methods to define the upper and lower
statistical limits beyond which a data point would be consid-
ered an outlier. Equations (11) and (12) define the Lower
Bound and the Upper Bound limits:

LB¼Q1 − 1:5� IQR ð11Þ

UB¼Q3þ 1:5� IQR ð12Þ

Q1 and Q3 are the first and the third quartiles of the data.
The IQR is the Inter‐Quartile Range, which is the range be-
tween the 25th percentile (Q1) and the 75th percentile (Q3) of
the dataset, which contains the middle 50% of the data as
defined by Equation (13):

IQR¼Q3 − Q1 ð13Þ

Figure 15 shows the Total waiting time distribution before
and after removing the outliers. The upper outlier limit was
roughly around 40 min.

3.5.3 | Feature scaling

The purpose of feature scaling is to ensure that all features are
on a comparable scale and have a similar range of values, which
can be important for many machine learning algorithms. Thus,
all features were scaled to the range of (0–1) using min‐max
scaling. Equation (14) illustrates the formula for min‐max
scaling:

XScaled ¼
XOriginal − Xmin

Xmax − Xmin
ð14Þ

F I GURE 1 5 Impact of removing outliers on the waiting time distribution.

F I GURE 1 4 Arrangement of columns in the ‘ML table’.
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where Xmin is the minimum original (Unscaled) value, and
Xmax is the maximum original (Unscaled) value.

3.5.4 | Data splitting

The purpose of splitting the data is to evaluate the model's
performance on unseen data. Evaluating the model on the
same data used for training can result in overfitting, where the
model becomes too specialised to the training data and fails to
generalise well to new data. The data was divided into a 70/30
ratio where 70% of the data is used for training and 30% for
testing and evaluating the models. In addition, the k‐folds
cross‐validation method was also used in some experiments;
10‐folds were used.

4 | RESULTS

4.1 | Experiment setup

As mentioned, the data used for training and testing will be
almost a year's data at a major healthcare facility. The hyper-
parameters of machine learning algorithms significantly impact
the model's performance; thus, they must be chosen optimally.
The grid search technique is used to find the optimal set of
hyperparameters to produce the best results out of the model.
The model's performance is evaluated using a cross‐validation
technique (5‐fold). The combination of hyperparameters that
results in the best performance on the validation set is selected
as the optimal one, and this set will then be generalised to
predict the test data.

Table 4 illustrates the hyperparameters selected for the
models used in this work. It is worth noting that these
hyperparameters were selected after performing a grid search
on many parameter configurations. In addition, Table 5 shows
the details of the neural networks used, both ANN and DNN.
It can be seen that both have a gradual reduction in the
number of inputs. They also have one output at the output
layer with no activation function, as expected in regression
problems.

The following are the specifications of the machine used to
perform the data transformation and the machine‐learning
models training:

� Processor: Intel Core i9 13900 K 13th Gen 24 Core.
� Memory: 64 GB DDR‐5 5200 MHz.
� Storage: 2 TB M.2 NVMe Gen 47,300 MB/s.
� GPU: GigaByte GTX1660 Super 6 GB DDR‐6 DUAL OC.

For the data engineering and transformation part,
PyCharm was used. Meanwhile, Jupyter Notebook was used
for the ML model's training and data visualisation. Table 6
shows the software versions used in addition to the Python
libraries used in the code.

4.2 | Performance metrics

Since this is a regression problem, three metrics were used to
evaluate the performance of the models, which are RMSE,
MAE, and R2_score.

� RMSE: Route Mean Squared Error. It shows the difference
between the prediction values byi and the actual values yi,
when the dataset has n instances, according to Equation (15).
In other words, the RMSE illustrates how far the predictions
fall from the actual values using Euclidean distance [29].

TABLE 4 Machine‐learning model's parameters.

ML model Parameter Values

Ridge regression alpha 0.1

Lasso regression fit_intercept True

Elastic net regression normalise Flase

random_state 50

l1_ratioa 1

Decision tree max_depth 7

max_features Auto

min_samples_leaf 5

random_state 50

Random forest n_estimators 100

random_state 50

max_features None

ANN/DNN Optimiser Nadam

Learning rate 0.01

Beta 1 0.9

Beta 2 0.999

Kernel initialiser GlorotUniform

Loss function MSE

al1_ratio applies to Elastic Net Regression Only.

TABLE 5 Neural networks model's architectures.

Model Layer Outputs Inputs Activation

ANNa Dense layer 1 128 1217 ReLU

Dense layer 2 64 128 ReLU

Output dense layer 1 64

DNNb Dense layer 1 300 1217 ReLU

Dense layer 2 150 300 ReLU

Dense layer 3 64 150 ReLU

Output dense layer 1 64

aTraining using epochs = 15, batch_size = 10.
bTraining using epochs = 15, batch_size = 30.

AL‐MOUSA ET AL. - 13
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

�
byi − yi

�2

n

v
u
u
t ð15Þ

� MAE: Mean Absolute Error. It measures the average error
amount in the predictions compared with the actual values
without considering their direction/sign. Equation (16)
shows the formula of MAE.

MAE ¼
Xn

i¼1

�
�byi − yi

�
�

n
ð16Þ

� R‐Squared (R2): It is a statistical metric used to determine
the proportion of variance in a dependent variable that an
independent variable can predict [30]. Equation (17) shows
the formula of R‐squared. Note that yi is the mean of all the
values.

R2 ¼ 1 −
Pn

i¼1
�
byi − yi

�2

Pn
i¼1
�
yi − yi

�
ð17Þ

4.3 | Results & discussion

4.3.1 | Results of machine‐learning models

Two testing methods were used, one using a simple {70:30}
split and the other using 10‐fold cross‐validation. Table 7 and
Figure 16 show the results based on the 70:30 split method. It
can be seen that the Random Forest produced the lowest
RMSE and lowest MAE numbers, 6.6 and 4.4 min, respec-
tively. In addition, Random Forest has the highest R2 score of
47%. One can notice that the RMSE is consistently higher than
the MAE, which is expected. Also, apart from the Random
forest, the classical machine‐learning model produced com-
parable results.

Table 8 and Figure 17 show results based on the 10‐fold
cross‐validation method. Since the data size is enormous, the

TABLE 7 Results based on the 70:30 split method.

ML model RMSE mins MAE mins R2_Score

Random forest 6.6 4.4 0.47

Decision tree 7.44 5.42 0.33

Ridge regression 7.61 5.52 0.3

Lasso regression 7.63 5.57 0.294

Elastic net regression 7.63 5.57 0.294

DNN 6.95 4.56 0.36

ANN 6.96 4.54 0.36

F I GURE 1 6 Models results with a 70:30 split.

TABLE 6 Software & libraries versions used.

Software/Library Version

Pycharm 2022.3.2 community Ed. w/Python 3.9

Jupyter notebook 6.4.12

numpy 1.23.5

matplotlib 3.5.2

pandas 1.4.4

tensorflow 2.12.0

seaborn 0.11.2

joblib 1.1.0

Pyodbc 4.0.34

scikit‐learn 1.0.2

ipython 7.31.1

TABLE 8 Results based on the cross‐validation method (10‐fold).

ML model RMSE mins MAE mins R2_Score

Random forest 6.686 4.485 0.46

Decision tree 7.45 5.45 0.33

Ridge regression 7.61 5.55 0.3

Lasso regression 7.63 5.6 0.3

Elastic net regression 7.63 5.6 0.3

F I GURE 1 7 Models results with a 10‐fold cv.
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results do not differ much between the two methods. Here
also, Random Forest performed the best with an RMSE of
6.69 min and an MAE of 4.49. The R2‐score decreased slightly
to 46%.

Figure 18 compares the actual time values and the pre-
dicted values using the Random forest model. The figure
shows the best‐fit line based on the distribution of the data.
One can notice that some predictions are far from the actual
time. This is partially expected as this is real data with many
factors affecting the actual time. One way to improve the
prediction would be not to include the types of services the
patient requested but also to figure out who is performing
these services in the centre on that day. This could significantly
improve the accuracy; however, this could raise lots of privacy
concerns about employee monitoring.

Figures 19 and 20 show the RMSE values per hall and per
service, respectively. The Halls and services on the x‐axis are
sorted according to their contribution percentage of the 80 k
tickets that represent the testing data. The percentage is shown

as the label on top of the bar. Note that in Figure 19, Hall 9445
has the most samples within the test data (24.8%). However,
the highest RMSE refers to Hall 9408, which has just 2.3% of
the samples within the testing data, which means for this
Figure, it is not necessary that the hall with the highest number
of samples gets the highest RMSE. Also, the same concept can
be mapped to Figure 20. Note that the services that appear in
the testing data are 176 services, and this figure shows the
RMSE of the top 10 (Most popular) services along with the
average RMSE of the remaining 166 services.

4.3.2 | Feature importance

One of the most important results in any machine learning‐
based solution is to understand which features contributed
more to the algorithm's decision‐making process. Algorithms
such as the Random Forest provide a sorted list of features'
importance. Figure 21 shows the top 10 significant features
based on their importance level.

Note that all the fetched features from the Customer_-
Transaction table, which are the Day of the Month, Day of the

F I GURE 2 0 RMSE per service (Single‐stage requests).

F I GURE 1 8 Actual versus Random Forest‐predicted values (For the
entire testing data).

F I GURE 1 9 RMSE per hall (Single‐stage requests). F I GURE 2 1 Features' importance—top 10 features.
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week, Hour of the day, month, and Priority, are within the top
10 features. For the Hospital_status table's features, their
importance can change based on the available data; thus, based
on the current data, the status features that significantly
affected the model's predictions are shown in the figure.

4.3.3 | Proposed ML‐based versus AST method

To further investigate the performance of the ML‐based
method, it is compared to the AST method. The ML models
were trained on the entire data except for the last month,
which represents the testing portion, as the AST values exist
only for the last month, which is 15677 tickets. All of them are
single‐stage tickets since the AST model predicted only single‐
stage requests. Table 9 shows the results that demonstrate how
superior the ML‐based model is to the AST model. Note that
the model that produced the best results over the testing data is
the DNN.

Based on the aforementioned results, it can be noted that
the improvements the ML‐based model achieved compared
with the AST method model are

� RMSE: ML‐based model achieved a 25.1% improvement.
� MAE: ML‐based model achieved an 18.9% improvement.

Figure 22 illustrates the comparison between the ML‐based
and AST methods.

Meanwhile, Figure 23 compares the actual time and the
predicted time using the ASTmethod based on the 15 k tickets
that were used to establish the comparison between the ML
model and the AST method. Note that the red line indicates
the best‐fit line for the given data. Figure 24 shows a similar

graph using the ML‐based method. It can be seen that the
distribution of predictions based on the ML‐based model is
more linear than the AST method, and this illustrates the
improvement in the MAE and RMSE that the ML‐based
model achieved.

4.4 | Limitations

One of the significant limitations of the proposed solution is
common to all machine learning solutions. Any ML‐based
model is as good as the data used to train it, and since the
hospital environment is dynamic, there is always a need to keep
retraining the model. This retraining process overcomes
changes in the environment, such as changes in the employees
who perform the services, changes to the health protocol and
how services are performed, or even the order of the stages in
a multi‐stage queue.

It can be seen that the model is flexible and can be
generalised to any healthcare facility, as the model did not

F I GURE 2 2 ML‐based versus AST results.

F I GURE 2 3 Actual versus AST predictions.

F I GURE 2 4 Actual versus ML‐based predictions.

TABLE 9 Machine‐learning model versus AST model.

ML‐based model AST model

RMSE mins MAE mins RMSE mins MAE mins

6.46 4.5 8.62 5.55

16 - AL‐MOUSA ET AL.
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include any information about the patient's demography or the
specific stages in the queue. The only items specific to this
healthcare facility were the number of halls and the number of
services. These can be easily modified, and the proposed model
can be used in any healthcare facility, provided it is retrained
using data from the new facility.

5 | CONCLUSIONS

This work aimed to design a machine learning model to predict
the patients' waiting time in healthcare facilities accurately. The
work presented how a typical transactional dataset can be
transformed into an ML‐ready dataset suitable for wait time
prediction and how a set of features can be engineered to
enhance prediction accuracy. To evaluate the accuracy of the
approach, a diverse set of ML‐based algorithms and grid search
techniques were employed to find the best algorithm and
combination of hyperparameters that would fit this problem,
which turned out to be the Random forest with an RMSE of
6.7 min. Moreover, the proposed ML‐based model out-
performed the currently used AST method. The proposed
model achieved a 6.46 RMSE compared with 8.62 RMSE for
the AST method. The technique also supports multistage re-
quests, which the AST method does not.

Considering their architecture and daily congestion, it is
worth noting that the results reported for this setup can be
applied in different enterprises, such as banks, restaurants, and
airports. It is not restricted by any clinic type or number of
stages, making it applicable to various medical and non‐medical
applications.

The future scope of this work can include expanding the
input features of the model to include more information about
the nurses and administrators on duty, which could signifi-
cantly enhance the accuracy of the prediction. Also, another
area for future investigation is if one can identify bottlenecks in
the multi‐stage queue and be able to reallocate resources
automatically.
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